THE STRUCTURES OF THE THEAFLAVINS OF BLACK TEA T. Bryce, P.D. Collier (a), I. Fowlis and P.E. Thomas, Unilever Research Laboratory, Colworth House, Sharnbrook, Bedford. D. Frost and C.K. Wilkins, Unilever Research Laboratory, Vlaardingen, The Netherlands.

(Received in UK 18 May 1970; accepted for publication 10 June 1970) Theaflavin, a pigment of black tea, has recently been shown to be a disubstituted 1'2'_-dihydroxy-3,4-benzotropolone formed from epigallocatechin (EC) and epicatechin(EC).¹⁻³ Consideration of the mechanism of formation of 1',2'-dihydroxy-3,4-benzotropolones from catechols and pyrogallols⁴ suggests that similar pigments formed from other pairs of flavanols should occur in tea.⁵ We wish to report the isolation and synthesis of 3 such pigments, which are shown by NMR and mass spectrometry to be gallate esters of Theaflavin.

Two crystalline pigments were isolated from tea: one was identical in all respects to Roberts' Theaflavin (TF1),⁵ the other (TF3) was identical to the product of alkaline ferricyanide oxidation of EGCG and ECG. A third amorphous fraction (TF2) gave acetate and trimethylsilyl derivatives chromatographically identical to those of the products of ferricyanide oxidation of EGCG + EC (TF2A) and EGC + ECG (TF2B). TF2A and B and TF3 display u.v. and visible absorption spectra similar to that of TF1. Their i.r. spectra are also very similar and all include a band at 1630 cm.⁻¹ attributed to tropolone carbonyl groups. The i.r. spectra of TF2A and B and TF3 also include bands at 1698 cm.⁻¹ attributed to ester carbonyl groups: comparison of the intensities of the tropolone and ester bands indicates, as expected, ⁴ that TF3 is a digallate and that TF2A and B are monogallates of TF1. The appearance of molecular ions at m/e 1508 (TF2A and B) and 1804 (TF3) in the mass spectra of the trimethylsilyl derivatives supports this conclusion.

(a) To whom enquiries should be addressed.

	TF1	17 2A	TF2B	TF 3	TF4
X Y 2 2' 3 3'	H H 5.02 5.73 4.45 4.55	Galloyl H 5.31 5.76 5.70 4.54	H Galloyl 5.08 5.98 4.40 5.75	Galloy1 Galloy1 5.48 6.12 5.76 5.80	5.69 4.44
4 4 4'}(4H)	3.02,2.86 2.96,2.89	2.8 - 3.2 mult.	2.8 - 3.2 mult.	3.31,3.05 3.10,3.01	2.89,3.06 (2H) J_{AB} , 16.5 J_{AX} , $J_{BX} \simeq 2$
6,6' 8,8'	6.03,6.10 J, 2.3 6.07,6.08	6.03,6.08 J, 2.2 6.09,6.11	5.98,6.02 J, 2.3 6.07,6.12	6.13,6.16 J, 2.3 6.15,6.18	6.00 J, 2.3 6.07
a b c gallate(2H) Tropolone OH	7.54 7.97 8.03 - 14.93	7.62 7.97 8.02 6.91 14.82	7.58 8.00 8.03 6.93 14.95	7.78 8.00 8.10 (7.00(2H), (7.04(2H) 14.89	7.83 (d,J=2.5) 8.74 8.05 - 15.0

Spectra were obtained from solutions in deuterioacetone using a Varian HA-220 spectrometer. Our thanks are due to Mr. Verwiel of the TNO Laboratory, Delft, The Netherlands, for the use of this instrument, and for running many of the spectra. All 6 -values quoted (except those for tropolone hydroxyl protons) refer to D_2O -exchanged solutions.

The 220 MHz NNR spectra of the Pigments (Table 1) confirm these identifications. Comparison of the gallate regions (ca. 7 ppm) shows that TF3 (4 gallate protons) is a digallate ester and that TF2A and B are isomeric monogallate esters (2 gallate protons) of TF1. Comparison of the spectra of TF2, TF2A and TF2B shows that TF2 is a mixture of TF2A and B in the ratio 1.75:1. The gallate groups shift the C_3H and $C_{3'}H$ lines downfield by 1.2-1.3 ppm and the C_2H and C_2 , H lines downfield by 0.22-0.46 ppm from their positions in the spectrum of TF1. The lines due to C_2 , H in TF2B and TF3 cannot be precisely located due to superposition of the 6,8,6',8' AB patterns.^a The 3 protons of the bensotropolone ring (H_a, H_b, H_c) absorb in the region 7.5-8.1 ppm, and in all 4 spectra the centre line is broad. The assignments of these protons in Table 2 differ from those previously published for TF1, 1,2 and are based on the detection in double resonance experiments of (a) long-range bensylic couplings⁶ of C_2H with H_a

actection in double resonance experiments of (a) long-range benaylic couplings of C_2^{H} with H_a and of C_2^{H} , H with H_c ; and (b) mutual nuclear Overhauser effects (NOE)⁷ between H_b and C_2^{H} . The NOEs and the H_b line width are symptoms of the efficient mutual relaxation ^b and close approach of H_b and C_2^{H} ; inspection of Dreiding models confirms that of the 3 bensotropolone aromatic protons, H_b can approach closest to C_2^{H} .

The NMR spectrum of the ferricyanide co-oxidation product of gallic acid and HC (TF4) provides further support for these assignments. The C₂, H line appears at 5.69 ppm, thus confirming the assignment of lines at 5.73 and 5.76 ppm in the spectra of TF1 and TF2A to C₂, protons. Comparison of the low-field regions of the spectra of TF1 and TF4 shows that introduction of a carboxyl group at the 6"-position of the tropolone ring shifts the two broader lines (assigned to H_a and H_b in TF1) downfield, whilst the chemical shift of the sharpest line (H_c) remains unchanged. Decoupling experiments with TF4 demonstrate (a) a meta-coupling of 2.5 Hz between H_a and H_b, (b) benzylic coupling of C₂, H with both H_b and H_c, and (c) no NOE between C₂, H and H_b. This atypical behaviour is attributed to the fact that TF4 has a less crowded structure than TF1-3. In TF1-3, the avoidance of serious interactions between the 2

⁽a) Integration of these multiplets confirms that they arise from 5 protons instead of the expected 4, and expanded scale spectra show the superposition of a broad C₂, H line on the high-field end of the multiplet.

⁽b) Progressive saturation experiments confirm that H_h and C₂, H saturate less readily than the other protons.

bulky flavan groups probably restricts their rotation about the bonds joining them to the bensotropolone ring system: this results in small time-averaged H_b-C_2 , H separations, and very efficient mutual relaxation of H_b and C_2 , H. This accounts for relaxation-broadening of H_b lines, the NOEs, and for the failure to detect long-range couplings with H_b . In contrast, TF4 has only <u>one</u> flavan substituent: its rotation about the C_2 , $-C_4$, bond is therefore less restricted than in TF1-3, and the time-averaged C_2 , $H-H_b$ separation is greater. The influence of the consequently less efficient mutual relaxation of H_b and C_2 , H on the populations of their spin states is insufficient to produce NOEs, and their relaxation rates are not fast enough to cause collapse of long-range couplings.

References:

- Y. Takino, A. Ferretti, V. Flanagan, M. Gianturco and N. Vogel. <u>Tetrahedron Letters</u>, 1965, p.4019.
- A. Holmes, A. G. Brown, C. P. Falshaw, E. Haslam & W. D. Ollis, <u>Tetrahedron Letters</u>, 1966, p.1193.
- 3. Y. Takino, H. Imagawa, H. Horikawa & A. Tanaka, Agr. Biol. Chem. 1964,28,64.
- L. Horner and W. Durckheimer, <u>Z. Naturforsch.</u>, 1959, 14b, 741. J-C. Salfeld and E. Baume, <u>Angewandte Chem.</u>, 1957,<u>69</u>,723.
- 5. E. A. H. Roberts and M. Myers, <u>J. Sci. Food Agric.</u>, 1959,<u>10</u>, 176.
- 6. M. Barfield and B. Chakrabarti, Chem. Rev., 1969,69,776.
- 7. F. A. L. Anet and A. J. R. Bourn, J.A.C.S., 1965,87,5250.